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Abstract 

We extend to relativistic theories the concepts of probability density and probability 
current density ofnonrelativistic quantum mechanics, together with the charge and current 
densities that are used as sources of the electromagnetic field in the semi-classical theory 
of radiation. There are some limitations in the procedure, especially in the case of several 
particles. 

1. Introduction 

The wave function in nonrelativistic quantum mechanics is usually 
interpreted as a probability amplitude. From it we obtain not only the 
probability density, but also a probability current density. When these are 
multiplied by the charge of the particle, they are used as sources of the 
electromagnetic field in the semi-classical theory of radiation. 

We have extended the idea of probability amplitudes to the relativistic 
quantum mechanics of  scalar particles (Marx, 1969, 1970a) and of spin-�89 
particles (Marx, 1970b, c). We now propose to examine in greater detail the 
definition of similar densities in these theories, based on the Klein-Gordon 
equation and the modified Dirac equation for free particles and particles 
in an external electromagnetic field. 

We first come to the conclusion that the charge and current densities 
obtained from Noether's theorem do not lead to a reasonable interpretation 
in terms of probability densities. Since conservation laws refer primarily to 
integrated quantities, such as the total charge, we have considerable leeway 
in the definition of densities. We study two other possibilities. One is the 
straightforward generalization of the nonrelativistic definitions, but these 
(!ensities do not obey a differential conservation law. By a slight modifi- 
cation, we can eliminate this difficulty for free fields, but it reappears when 
we consider the interaction. In that case, we have nonlocal effects, which we 
consider an acceptable consequence of the use of integral operators in the 
Hamiltonian. 

The difficulties are more severe when we consider the theory of several 
noninteracting particles in an external electromagnetic field. We find no 
reasonable expression for the probability current density, and this problem 
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can be traced to the different modes of propagation of particles and anti- 
particles. We do find a current density that can be used as a source for a 
dynamical electromagnetic field in a semi-classical theory of radiation, but 
there is a lack of motivation that serves to emphasize the approximate 
nature of this approach, especially in a relativistic theory. 

We recall the nonrelativistic theory in Section 2, in order to compare it 
with the relativistic generalizations. These are presented in Section 3 for 
scalar particles and in Section 4 for spin-�89 particles. We briefly discuss the 
theory for several particles in Section 5, and conclude with some remarks in 
Section 6. 

We use natural units, the time-favoring metric in space-time and other 
conventions explained in our earlier papers on the subject. 

2. The Nonrelativistic Theory 

We can obtain the nonrelativistic Schr6dinger equation for free particles 

i~ = -(1/2m) V 2 ~b (2.1) 

from the Lagrangian density 

~ 0  = �89 ~ - ~* ~b) - (1/2m) (V~b*).V~b (2.2) 

Noether's theorem applied to gauge transformations of the first kind then 
gives the probability density 

p = I~12 (2.3) 

and the probability current density 

j = (1/2m)[~b*(-iV~b) + (iV~b*)~b] (2.4) 

which satisfy the differential conservation law 

+ V .j = 0 (2.5) 

We can introduce the interaction with an external electromagnetic field 
by means of the gauge invariant substitution 

0~, ~ D~, = Ot~ + iqAt, (2.6) 

to obtain the Lagrangian density 

= � 8 9 1 6 2  - r - q A 0  r  

- (1/2m) [07 - iqA)~b]* . (V - iqA)~b (2.7) 

The Schr6dinger equation becomes 

iq~ = [-(1/2m) (!7 - iqA) 2 + qAo] ~ (2.8) 

and Noether's theorem gives the same probability density (2.3) and the 
probability current density 

j = (1/2m) [~b*(-iV - qA) ~b + ~b(iV - qA) ~b*] (2.9) 

which still satisfy the conservation law (2.5). 
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When these densities are multiplied by q, they are used in the semi-classical 
theory of radiation as a source of the (classical) electromagnetic field. The 
underlying assumption is that the particle itself, not only the probability, is 
spread in space with density p. This is contrary to the basic probabilistic 
interpretation of quantum mechanics, but is considered to be a good 
approximation in certain problems. 

The complete interaction of the two classical fields can then be obtained 
from the Lagrangian density 

~ '  = ~ - �88 (2.10) 

where the field Av in .W can be replaced by A t + A~ ~t to consider both a 
dynamical and an external electromagnetic field. The equations of motion 
for the interacting fields are nonlinear, and they are usually solved by 
means of a perturbation expansion. There is radiation reaction when we 
consider higher than lowest-order terms or a non-perturbative solution, 
which would be especially interesting in the case of bound states.I" 

3. Scalar  Part ic les  

We have shown (Marx, 1969, 1970a) how the probabilistic interpretation 
of nonrelativistic quantum mechanics can be extended to the relativistic 
theory of charged scalar particles in an external electromagnetic field, 
based on the Klein-Gordon equation. The Lagrangian density for free 
particles is 

5r = $,~ ~,~ - m25"$  (3.1) 

from which we obtain the equation 

(02 + m 2) ~ = 0 (3.2) 

and the conserved current density four-vector 

.~ = ie(~* ~,u - ~*;,~) (3.3) 

for particles of charge +e. The probability amplitudes for the particle and 
the antiparticle are defined by 

g(+-)(x) = �89 -t- iE- '  ao) ~(x) (3.4) 

where we use the integral operator 

f t .=  ( - V  2 + rn2) I/2 (3.5) 

In terms of these amplitudes, equation (3.2) takes the form of two 
Schr6dinger-type equations 

i~ c~) = ~r ~c = + (3.6) 

? Radiation reaction for classical particles is discussed in detail by Rohrlich (1965). 
Other problems in nonlinear theories of quantum mechanics are discussed by Leiter 
(1969, 1970). 
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and the charge density becomes 

Jo = �89 ~ [K(/~l/Zg (~)*) ~-ll2g(,O + X(/~-l/2g(~)*)/~l/2g(~) 
K 

+ (~l/2g(~:)*)~-l/2g(-~c) __ (ff-l/2g(X)*)j~l/2g(-K)] (3.7) 

It is hard to find an interpretation for the last two terms, which represent 
some kind of interference between particle and antiparticle amplitudes, 
unlikely to have a physical meaning in the absence of an interaction. A 
similar difficulty occurs in the separation of the orbital and spin parts of the 
angular momentum of spin-�89 particles. The separation most commonly 
found in the literature does not give two separately conserved parts, but 
we have shown (Marx, 1968) how a reasonable use of the probability 
amplitudes gives a better answer to this problem. We observe that the total 
charge 

Q = _t ]0 d3 x (3. 8) 

can be rewritten in the form? 

Q = e f (p(+) - p(-)) d 3 x (3.9) 

where we introduce the probability densities 

p(+-) = [g(+-)l z (3.10) 

It is then obvious that we should consider 

Jo" = e(P (+) - -  P( - ) )  (3.11) 

for the charge density, and the relativistic velocity operator suggests that 
the current density should be 

j' = �89 ~ [g('~176 + g('~176 (3.12) 
K 

A direct calculation using the equations of motion (3.6) shows that these 
densities do not obey a differential conservation law, which we find 
objectionable in the case of free particles. 

We further note that the last two terms in equation (3.7) do not contribute 
to the total charge, which suggests that we try 

Jo"= �89 ~ [tC(ff-,l/2g(K)*)ff-,-1/2g ('0 + K(E-1/2g('O*)ff-,l/2g (~:)] (3.13) 
K 

j" = �89 ~ [(ff~-l/Zg(")*)(-iV)ff,-1/2g ~') + (ff~-l/2g('~ ~176 (3.14) 
K 

and we find that these densities do obey the conservation law. The contri- 
butions from particles and antiparticles are separated, and actually both are 
conserved in the absence of interactions. We thus find this definition more 
acceptable in terms of probability amplitudes and probability densities, 
which can be obtained by dividingju" by e. One might expect offhand that 

t This equation shows that the total charge of the system is not necessarily equal to the 
charge of the particle. 



CURRENT DENSITY IN RELATIVISTIC QUANTUM MECHANICS 155 

the contribution of particles and antiparticles to the current density would 
have opposite signs; the reason this is not so can be traced to the minus sign 
in equation (3.6) for g~-), which is related to the concept of antiparticles 
propagating backward in time. 

We obtain the correct nonrelativistic limit when neglect g~-~ and replace 
/~ by m in equations (3.13) and (3.14), but this is also true for the other 
alternatives. 

When an external electromagnetic field is present, we have to modify the 
equations accordingly to 

~(' = (D#* ~*) D# q~ - m 2 ~* ~ (3.15) 

(D E + m 2) ~ = 0 (3.16) 

j~ = ie[~* D~, ~ - (D~* ~*) ~] - ie(~* D~ ~ (3.17) 

g~• = 3(1 4- iE -] Do) ~(x) (3.18) 

ig (K) = [KE -~ le (El /2  A 0 ~-1/2 + ~-1/2 Ao gl /2)  

+ �89 + iA.V + eA2)/~-1/2] g (K) 

+ [�89 1/: Ao ~-1/: _ g - l / :  Ao s 
+ �89 + iA.V + eA2)/~-l/U]g t-K) (3.19) 

Equations (3.8) and (3.9) are still valid, so that we can retain equation 
(3.13) for the charge density, while replacing equation (3.14) by 

j" = �89 Z [(g-l/2g(K)*) ( - iD)  ff,-*/2gOO + (/~-l/2g~K))iD* ~-l/2g(K).] (3.20) 
K 

which still has the right nonrelativistic limit. A direct computation using 
equation (3.19) shows that the conservation law (2.5) is not satisfied. This 
shows that we cannot u s e j S  as a source, for the electromagnetic field, since 
Maxwell's equations 

F,,,v = A  (3.21) 

imply that the differential conservation law must be satisfied. We are thus 
inclined to consider j~", without the overall factor e, a probability current 
density. As we have pointed out already for the nonrelativistic case, the 
probabilistic interpretation of  quantum mechanics in no way leads to the 
proportionality between the probability density and the charge density. 
These arguments are thus not a reason to reject j~ as defined in equation 
(3.17) as a source of the electromagnetic field, which can be included in the 
theory through the Lagrangian density (2.10). 

The lack of a differential conservation law for the probability current 
density woald indicate that a change in the probability of finding the 
particle or the antiparticle in a finite volume is not related to a flux across its 
surface. These nonlocal effects should be expected in a relativistic theory 
that uses integral operators such as J~. Furthermore, we have pointed out 
(Marx, 1970d) that probability amplitudes should not be interpreted in the 
usual sense at intermediate times. If  we start with a particle at the initial 
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time, it will either show up as a particle at the final time or as an antiparticle 
at the initial time. The imposition of the condition that the antiparticle 
amplitude be zero at the final time indicates that no observations should be 
permitted at intermediate times, since they would affect the system and the 
boundary conditions. These arguments apply to particle scattering and pair 
annihilation, but similar ones can be stated for antiparticle scattering and 
pair creation. 

4. Spin-�89 Particles 

The Dirac equation does not lend itself to a formulation of relativistic 
quantum mechanics in terms of probability amplitudes for a single particle, 
due to the positive definite nature of what is usually interpreted as a prob- 
ability density. In a relativistic theory it is not probability but charge that is 
conserved. We do not find the hole theory of positrons and the infinite sea of 
filled negative-energy electron states a satisfactory correlation between the 
Dirac theory and physical reality. We have proposed instead a theory based 
on the Klein-Gordon equation for two-component spinors (Marx, 1970c) 
and another based on a modification of the Dirac equation (Marx, 1970b). 
The latter is the one that best describes electrons. 

We start from the Dirac equation for free particles, 

( - i7 .0+m)$=0 

which can be obtained from the Lagrangian density 

and Noether's theorem gives the conserved current density 

j. = -e~r.  d 2 

(4.1) 

(4.2) 

(4.3) 

for particles of charge -e.  The probability amplitudes are obtained from 
the four-component spinor ~b by a Foldy-Wouthuysen transformation 

/ /~+ re\l/2 [ ~ )  ~(x) (4.4) ) tl- 
a n d  they obey equations of the form (3.6). We introduce the electromagnetic 
interaction through the gauge invariant substitution (2.6), but then we 
modify the Dirac equation to obtain the equations of motion 

io~(~) = [K~ - / ~ +  m\l/2r/ a .V o.V 
/ 

/'"' + 
\r_., ~ m 

+ m '[itAo -e k > o )  
\ ~ ]  k \ E+m 

- K  a . A + E +  m . E + m I J \ - 2 E - ]  



C U R R E N T  DENSITY IN R E L A T M S T I C  Q U A N T U M  MECHANICS 157 

The current density (4.3) is conserved for the Dirac equation, but not 
when the equations of motion (4.5) are used. Instead, the densities 

Jo" =--~e ~ [K(ff, l/2 g(K))t ff,-l/2 g (K) q- tc(E-l/2 g(~))t ff, I/2 g (K)] (4.6) 
K 

j" = --~lze :~ [(-iaa.Dff~-l/2g(~))tff.-l/2g (K) 
K 

+ (~-1/2 g(~))* ( - i a a .  DJ~ -I/2 g(~))] (4.7) 

obey a conservation law for free particles, while for particles in an external 
electromagnetic field they do not, although the total charge 

Q = f A "  d3 x (4.8) 

is conserved. This is no longer true for the charge obtained from j0. We have 
chosen this particular form of the current density (4.7) by analogy to the 
terms in the Hamiltonian; the relation 

a ~ . p  = p + l"1) ̂  ~ (4 .9)  

indicates that the spin of the particle contributes to the current density. 
We have now a situation that does not differ significantly from that 

discussed in Section 3 for scalar particle, and the same general comments 
apply.t 

5. Many Particles 

The generalization of nonrelativistic quantum mechanics to several 
particles involves a wave function ~b(xl,x2,...,x,;t), which obeys the 
equation 

i~b = ~ [-(1/2mk) Dg 2 + qkA0(xk, t)] ~b (5.1) 
k=l  

We can then generalize equations (2.3) and (2.9) to 

jo(,,,t)= f 3(x-x )14,12d3x,...d3x. (5.2) 
5=1 

j(x,t)  = - - i  ~ (qk/2mk) f 3(x-xk)(~b*~)k~b)d3xl...d3xn (5.3) 
k=l  

and these densities satisfy the conservation law (2.5). When the particles are 
identical, the wave functions are symmetric or antisymmetric and the 
densities take somewhat simpler forms. 

We have discussed the relativistic quantum mechanics of identical 
particles (Marx, 1970a, c) within the framework of Dirac's many-time 

t The idea of a position of the charge as different from the position of the particle 
(Sehr6der, 1964) does not appear to be helpful for our understanding of relativistic 
quantum mechanics. 
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formalism. For distinguishable scalar particles,t the probability amplitudes 
g(~,...K.) (xl . . . . .  xn) obey equations of the form 

iOjo gOq... ~j... ~,) = ~ H~K~" g(~'"'~/"" ~") (5.4) 

where the Hamiltonian operators H j ~ j ,  for the j th  particle can easily be 
determined from equation (3.19). The conserved charge (3.9) can be 
generalized to 

Q= Y, f ql...qnlg(~'"'~")(x,,t;...;xn, t)12dSx~...dSxn (5.5) 
{x j }  

We do not find a reasonable interpretation for the products of the charges 
that we have in equation (5.5). On the other hand, if we define the charge of 
particle 1 as 

QI =qJ ~ f Jcllg(~'"'~")(xl, t;...;xn, t)] zd3x] ...d3xn (5.6) 
{K j }  

we find that it is not conserved. Again this difficulty is not surprising since 
conservation of charge in our theory relates probabilities obtained from 
amplitudes in which particle times are ti and antiparticle times are t s with 
those in which they are t s and ti respectively. That is, any of the particles that 
is given at t, can be either scattered or annihilated, and any of the anti- 
particles given at t e can have been either scattered or created. No special 
meaning is found for these amplitudes when we set all times equal to t. 

Thus, we come to the conclusion that there are no reasonable generali- 
zation for the probability current densities. 

We now proceed to generalize ju(x), as defined in equation (3.17), in 
terms of the wave function ~(xl . . . . .  x,). We first define 

.~,,..-a(xl, x2 . . . . .  x,) = i n 4" D~(xl) Dr(x2)... Da(x,) 4) (5.7) 

which obeys n separate conservation laws. We then set 
n 

= f 8 (x  - . . . .  , t , . . . ,  x , . . .  Xn (5 .8 )  

and the conservation laws show that it is independent of times other than t. 
But we do not have a compelling reason to justify this definition, except that 
it gives a conserved current density that can be used as ~/source for the 
electromagnetic field. 

We find no additional difficulties when the particles are identical. 

6. Concluding Remarks 

We have examined in detail the ideas of probability densities and 
probability current densities in relativistic quantum mechanics, especially 

i" If we wish to consider spin--} particles, all we have to do is add the necessary spin 
indices to the amplitudes. 
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in relation to the charge and current densities that serve as a source of the 
electromagnetic field in the semi-classical theory of radiation. 

We observe that this relation is in the nature of an approximation rather 
than of fundamental significance in the nonrelativistic theory. We find that 
the most appropriate definitions for these two sets of densities differ 
considerably in the relativistic theory of charged scalar particles, but that 
this does not imply any serious inconsistency. Similar conclusions are 
reached for the theory of spin-�89 particles. 

The generalization of probability currents to a theory of many particles 
was not successful, although a charged current density was found. This 
leads once more to the conclusion that certain amplitudes where the times 
are either t~ or t s can be interpreted properly as probability amplitudes, 
while no observations are allowed at intermediate times. 

More extensive studies of the complete interactions between the particle 
fields and the electromagnetic field should show more clearly to what extent 
relativistic quantum mechanics and a semi-classical theory of radiation 
explain the results of  experiments, and what types of problems require a 
solution within the framework of a quantum theory of fields. 
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